找回密码
 立即注册
搜索
总共850条微博

动态微博

查看: 2736|回复: 3
打印 上一主题 下一主题
收起左侧

Number problem from WXC

[复制链接]

53

主题

363

帖子

4139

积分

跳转到指定楼层
楼主
发表于 2005-2-11 17:58:16 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

This problem first appeared at WXC, and I solved it using an idea I got from 野菜花's 北京初中数学竞赛题. She suggested me to post it here. So here it is.
 www.ddhw.com
The repeat of a positive integer is obtained by writing it twice in a row (so, for example, the repeat of 254 is 254254). Is there a positive integer whose repeat is a perfect square?
 
Because a computer can solve the problem quicker than us, I would add a little flavor to it.
 
a) What is the general format of such numbers?
b) Without using a computer, what is the smallest such number you can find? (I will post the smallest one I found.)
www.ddhw.com

 
回复

使用道具 举报

1177

主题

2775

帖子

6万

积分

沙发
发表于 2005-2-11 21:35:02 | 只看该作者

谢谢fzy, 如果我们能从别的论坛转载题来,一定会很受欢迎


  谢谢fzy, 如果我们能从别的论坛转载题来,一定会很受欢迎




回复 支持 反对

使用道具 举报

10

主题

271

帖子

1996

积分

板凳
发表于 2005-2-12 09:19:32 | 只看该作者

answer


The question is equivalent to finding integer m such that 10^m+1 = a^2*b, where a, b are integers with a > 1 and b < 10^m+1.  Then the number we want is (10^m+1)*b = a^2*b^2 = (ab)^2.

 www.ddhw.com

I don’t think there is any general format for m.  For example, 10^11+1 is divisible by 11^2, 10^21+1 is divisible by 7^2, and 10^39+1 is divisible by 13^2.

 www.ddhw.com

An interesting case is when m is odd integer (m = 2k+1).  10^m+1 is divisible by 11, and the quotient is 90…9091, where “90” appears k-1 times.  With proper k, 90…9091 can be divisible by 11, i.e., 9k=1 (mod 11).  So k = 5+11n, that is m = 11+22n, n = 0, 1, 2, …

 

When n = 0, the number we find is (10^11+1)/11^2=826446281.

www.ddhw.com

 

回复 支持 反对

使用道具 举报

53

主题

363

帖子

4139

积分

地板
 楼主| 发表于 2005-2-13 06:46:48 | 只看该作者

回复:answer


Good job. There is a minor correction. For (10^m + 1) * k to be a repeat number, k must have m digits. If 10^m + 1 = a^2 * b, a must be >= 7, and therefore the number we want is (10^m + 1) * b * c^2, where 0.1 < c^2 / a^2 < 1.
This is what I call a general formula, although it is not general enough because it does not say how to find m. There is probably no general format for m, but it looks like for any odd a which is not a multiple of 3 or 5, m exists.
Using the above general formula, the smallest repeat square I found is a repeat of 826446281*16, or 1322314049613223140496.
www.ddhw.com

 
回复 支持 反对

使用道具 举报

24小时热帖
    一周热门
      原创摄影
        美食美文
          您需要登录后才可以回帖 登录 | 立即注册

          本版积分规则

          Archiver|手机版|珍珠湾ART

          Powered by Discuz! X3 © 2001-2013 All Rights Reserved