珍珠湾ART

标题: 醉鬼散步 [打印本页]

作者: constant    时间: 2006-4-20 23:18
标题: 醉鬼散步

难度:++www.ddhw.com

最近WXC出了好几个醉鬼问题,咱们也出一个。www.ddhw.com

一个醉鬼在悬崖边散步。开始时背对悬崖(倒退一步就掉下去)。每一步他向前走的概率是2/3,向后是1/3。假设他不转身,也不往旁边走,他掉下悬崖的概率是多少?www.ddhw.com

更复杂一点,假设他向前走的概率是p,向后是1-p,开始时离悬崖k步,他掉下悬崖的概率是多少?
www.ddhw.com

 

作者: sean9991    时间: 2006-4-21 02:10
标题: 回复:醉鬼散步

For general problem, let the probability be P(k).www.ddhw.com
We have the following equations:
P(0) = (1-p) * 1 + p * P(1), ...
P(k) = (1-p) * P(k-1) + p * P(k+1), ...
We can derive the following equations:
p * P(k+1) - (1-p) * P(k) = p * P(k) - (1-p) * P(k-1).
Therefore, p * P(k+1) - (1-p) P(k) = ... = p * P(0) - (1-p) * 1.
When k approaches 0, both P(k) and P(k+1) approach 0. 
Hence, P(0) = (1-p) / p, P(1) = P(0)^2, ..., P(k) = P(0)^(k-1).
www.ddhw.com

 

作者: 大头羊    时间: 2006-4-21 04:21
标题: 回复:回复:醉鬼散步

莫非这就是传说中的马尔可夫公式 
 
 
www.ddhw.com

 

作者: constant    时间: 2006-4-21 19:33
标题: 回复:回复:醉鬼散步

A tiny problem: "both P(k) and P(k+1) approach 0", this is true only if p < 1/2.


 

作者: sean9991    时间: 2006-4-22 00:30
标题: 回复:回复:回复:醉鬼散步

When k approaches infinity, P(k) and P(k+1) will approach 0 as long as p > 0.
www.ddhw.com

 

作者: constant    时间: 2006-4-22 01:30
标题: 回复:回复:回复:回复:醉鬼散步

They are 1 for any k if p >=1/2. Try your own formula.


 

作者: sean9991    时间: 2006-4-24 17:53
标题: 回复:回复:回复:回复:回复:醉鬼散步

that is true.
www.ddhw.com

 





欢迎光临 珍珠湾ART (http://66.160.158.134/) Powered by Discuz! X3