以前不是来这里,可能有些题已经出过,如果重复,请原谅!
把1、2、3、4、5五個數字列一橫排,其中任取兩個數字,做一次相加,一次相減,如取2、4得到6、2替代原來的2、4,其他數字不變位,得到一個新的橫排:1、6、3、2、5。以類此推,能得到五個相同的數字嗎?如果能,怎樣得到?给出分析过程。
One way to handle (1,2,3,4,5): 1, 2, 3, 4, 5 1, 3, 3, 4, 5 1, 3, 2, 4, 8 2, 4, 2, 4, 8 0, 4, 4, 4, 8 4, 4, 4, 4, 8 0, 8, 0, 8, 8 8, 8, 8, 8, 8 if we assume there is a solution and work backward, we will see that the result number must be in the form of 2^N provided that the 5 initial numbers are different. ie if we got x,x,x,x,x as the final line, By working backward, we have 0,x,x,x,x, x/2,x/2,x,x,x or 0,0,x,x,x ... I don't know if there is a solution for any sets of 5 numbers. |
问题的关键在于“work backward”和数字为2^N |
欢迎光临 珍珠湾ART (http://66.160.158.134/) | Powered by Discuz! X3 |